
1 Physics 40E handout on Fourier matters

1.1 Fourier Series

I will first consider periodic functions f that obey

f(x− L/2) = f(x+ L/2) (1)

where L is the period. Important examples of these functions are

e2πinx/L, n = 0,±1,±2, · · · (2)

The idea is first to find the best approximation to a periodic function f
using the above exponentials, that is, consider

g(x) =
∞∑

n=−∞
gne

2πinx/L (3)

(which is periodic with period L) and find the coefficients gn for which

∆ =
∫ L/2

−L/2
dx |f − g|2 (4)

is as small as possible.
Since gn is in general complex I will write

gn = un + ivn (5)

Then, using(
∂|f − g|2

∂un

)
= −

(
∂g∗

∂un

)
(f − g)− (f ∗ − g∗)

(
∂g

∂un

)
= −e−2πinx/L(f − g)− (f ∗ − g∗)e−2πinx/L

(
∂|f − g|2

∂vn

)
= −

(
∂g∗

∂vn

)
(f − g)− (f ∗ − g∗)

(
∂g

∂vn

)
= ie2πinx/L(f − g)− i(f ∗ − g∗)e2πinx/L (6)

The minimum of ∆ occurs whenever

0 =

(
∂∆

∂un

)
= −

∫ L/2

−L/2
dx

[
(f − g)e−2πinx/L + (f − g)∗e2πinx/L

]
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0 =

(
∂∆

∂vn

)
= i

∫ L/2

−L/2
dx

[
(f − g)e−2πinx/L − (f − g)∗e2πinx/L

]
(7)

which imply∫ L/2

−L/2
dx (f − g)e−2πinx/L = 0

∫ L/2

−L/2
dx (f − g)∗e2πinx/L = 0 (8)

Note that these are complex conjugate of each other, so I can impose one
and the other will be immediately satisfied. Using the first of them I get∫ L/2

−L/2
dx fe−2πinx/L =

∫ L/2

−L/2
dx ge−2πinx/L

=
∫ L/2

−L/2
dx

∞∑
n′=−∞

gn′e2πin′x/Le−2πinx/L

=
∞∑

n′=−∞
gn′

∫ L/2

−L/2
dx e2πin′x/Le−2πinx/L (9)

Now, for n′ 6= n I have∫ L/2

−L/2
dx e2πin′x/Le−2πinx/L =

L

2πi(n′ − n)
e2πi(n′−n)x/L

∣∣∣L/2

−L/2

=
L

2πi(n′ − n)

[
eπi(n′−n) − eπi(n′−n)

]
=

L

π(n′ − n)
sin[π(n′ − n)]

= 0 (10)

therefore∫ L/2

−L/2
dx fe−2πinx/L =

∞∑
n′=−∞

gn′

∫ L/2

−L/2
dx e2πin′x/Le−2πinx/L

= gn

∫ L/2

−L/2
dx e2πinx/Le−2πinx/L

= Lgn (11)

since only the term n′ = n is not zero.
The best approximation to f is then

∞∑
n=−∞

gne
2πinx/L, gn =

1

L

∫ L/2

−L/2
dx fe−2πinx/L (12)
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In fact it can be shown that for functions such that f, df/dx and d2f/dx2

have at most finite jumps this best approximation is equal to f ,

f(x) =
∞∑

n=−∞
gne

2πinx/L, gn =
1

L

∫ L/2

−L/2
dx f(x) e−2πinx/L (13)

1.1.1 Example

Consider the case L = 2π and the function

f(x) = +1 for 0 < x < π
= −1 for − π < x < 0
=

x

|x|
(14)

From the definition

gn =
1

2π

(∫ π

0
e−inydy −

∫ 0

−π
e−inydy

)
=

1

2π

(
e−inπ − 1

−in
− 1− e+inπ

−in

)

=
(−1)n − 1

−inπ

g2k+1 = − 2i

(2k + 1)π
g2k = 0 (15)

Substituting I find

f(x) =
4

π

(
sin x+

1

3
sin(3x) +

1

5
sin(5x) + · · ·

)
(16)

The way the sum converges can be seen in figure 1
Now in the interval 0 < x < π I then get

π

4
=
(
sin x+

1

3
sin(3x) +

1

5
sin(5x) + · · ·

)
(17)
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Figure 1: Fourier series approximation to x/|x| for |x| < π. The blue curve
corresponds to taking only the first term, green curve taking the first 4 terms,
the red curve taking the first 30 terms.

so that, putting x = π/2,

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · (18)

Next, integrating 17 from 0 to x gives

π

4
x = (1− cosx) +

1

32
[1− cos(3x)] +

1

52
[1− cos(5x)] + · · · (19)

and again putting x = π/2,

π2

8
= 1 +

1

9
+

1

25
+ · · · (20)

1.1.2 Exercises

1. Expand f(x) = sin(|x|), |x| < π in a Fourier series

2. Expand the function f(x) = x, |x| < π in a Fourier series

3. Expand the function f(x) = sin(µx), |x| < π in a Fourier series
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4. Using equations 17, 19 show that

π3

32
= 1− 1

27
+

1

125
+ · · · (21)

5. Use equation 17 to show that

π2

6
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ · · · (22)

1.2 Fourier Integrals

I will now consider the L→∞ limit. To take it I define

h =
2π

L
kn = nh =

2πn

L
(23)

then the above expression become

2π

h
gn =

∫ L/2

−L/2
dx e−ixknf(x)

f(x) =
1

2π

∞∑
n=−∞

h
(

2π

h
gn

)
eixkn (24)

this suggests the definition

g(k) =
∫ ∞

−∞
dx e−ixkf(x) (25)

so that, as L → ∞, (2π/h)gn → g(kn). Also the “distance” between to
consecutive values of kn is

δk = kn+1 − kn = h (26)

so that I can write

f(x) =
1

2π

∞∑
n=−∞

δk g(kn)eixkn (27)

which in the L→∞ limit becomes an integral. Collecting results I get

f(x) =
∫ ∞

−∞

dk

2π
g(k)eikx

g(k) =
∫ ∞

−∞
dx f(x)e−ikx (28)

In this case one says that f and g are Fourier transforms of each other.
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1.2.1 Exercises

1. Find the Fourier transform of the step function

f(x) =

{
1 |x| < b
0 |x| ≥ b

(29)

Plot the result, note that a discontinuity in f generates oscillations in
g

2. Find the Fourier transform of the n−th derivative dnf/dxn in terms of
g, assuming that f and all its derivatives vanish as |x| → ∞.
Hint: integrate by parts.

3. Find the Fourier transform of F (x) = f(bx)eitx in terms of g, the
Fourier transform of f .
Hint: make an appropriate change of variables.

4. Find the Fourier transform of

f(x) = Ae−bx2/2 (30)

Plot your result; note that there is a relation between the half-widths
of f and g and that no strong oscillations are induced in g even though
f is localized.

5. Show that if f is even its Fourier transform is

g(k) =
∫ ∞

−∞
dx cos(kx)f(x) (31)

6. Show that if f is odd and real then g is purely imaginary.

1.3 Integral identities

If we have two periodic functions f and F with

f(x) =
∞∑

n=−∞
gne

2πinx/L

F (x) =
∞∑

n=−∞
Gne

2πinx/L (32)
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then the integral∫ L/2

−L/2
dx f ∗F =

∞∑
n=−∞

∞∑
n′=−∞

g∗nGn′

∫ L/2

−L/2
dx e2πin′x/Le−2πinx/L

= L
∞∑

n=−∞
g∗nGn (33)

since the integral of the exponentials vanishes whenever n 6= n′. Therefore

1

L

∫ L/2

−L/2
dx f(x)∗F(x) =

∞∑
n=−∞

g∗nGn (34)

Now, in the L→∞ limit I find∫ ∞

−∞
dx f(x)∗F (x) = lim

L→∞
L

∞∑
n=−∞

h

2π
g∗(kn)

h

2π
G(kn)

= lim
L→∞

Lh

2π︸︷︷︸
=1

1

2π

∞∑
n=−∞

δk g∗(kn)G(kn)

=
∫ ∞

−∞

dk

2π
g(k)∗G(k) (35)

Therefore

∫ ∞

−∞
dx f(x)∗F(x) =

∫ ∞

−∞

dk

2π
g(k)∗G(k) (36)

For example take f = ψ and F = dψ/dx, then if

f(x) =
∫ ∞

−∞

dk

2π
a(k)eikx (37)

I have

F (x) =
df

dx
=
∫ ∞

−∞

dk

2π
[ika(k)]eikx (38)

so that g(k) = a(k) and G(k) = ika(k). Then,∫ ∞

−∞
dx ψ∗

dψ

dx
=

∫ ∞

−∞
dx f ∗F
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=
∫ ∞

−∞

dk

2π
g(k)∗G(k) =

∫ ∞

−∞

dk

2π
a(k)∗[ika(k)]

= i
∫ ∞

−∞

dk

2π
k|a(k)|2 (39)

1.4 Exercises

1. Assume that

f(x) =
∫ ∞

−∞

dk

2π
a(k)eikx (40)

and find the expression for∫ ∞

−∞
dx f(x)

dnf(x)

dxn
(41)

in terms of a(k).

2 Wave packets

There is no reason to limit considerations to 3 dimensions, any function of
r, t can also be expanded in a Fourier series or integral,

f(r, t) =
∫ dωd3k

(2π)4
g(k, ω)ei(ωt−k·r) (42)

A note on conventions. The exponent is written as ωt−k·r
for the following reason: in quantum mechanics the frequency
and wave number are associates with the energy and momen-
tum through ω = E/h̄, k = p/h̄ so that the exponent then
reads (Et − p · r)/h̄ and this expression is relativistic ally
invariant (does not change under a Lorentz transformation).
This is not so for the combination ωt+k · r

The wave-function associated with some particle, ψ can be expanded in
this fashion

ψ(r, t) =
∫ dωd3k

(2π)4
φ̃(k, ω)ei(ωt−k·r) (43)

At this point this is a purely mathematical statement. In physics, however
we will be interested in the dynamics of the wave functions.

For example, classical mechanics uses the empirical fact that objects move
in space as a result of some external agencies, so their positions can be
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described by functions ra(t) (a labels the object). among the many brilliant
insights of Newton was the realization that these functions are determined
from the dynamics, together with the values of all the positions and momenta
at one time t0

1. As a result we need to specify ra(t0),pa(t0) together with
the expressions for the forces as functions of the positions (and perhaps
momenta), and the use Newton’s equations to get the time evolution of the
system.

Now, in quantum mechanics we do not have position and momenta “co-
ordinates”, instead the full information about the system is contained in its
wave function. This has been argued for one particle, but is assumed to be
a general statement (as in many of these pronouncements, there is no proof
for this postulate, one merely adopts it as a working hypothesis and is satis-
fied with it only as long as the predictions agree with the observations). So
(hopefully), the dynamics of quantum mechanics should tell us what ψ(r, t)
is given the values ψ(r, t0) and perhaps ∂tψ(r, t0) and higher derivatives.
Here I will consider only the case where the wave function at time t0 fully
determines the time evolution2.

Now, I can take t0 = 0 (equivalent to calling t0 a convenient time to
choose as the origin), the assumption is that ψ(r, t) is determined from

ψ(r, t = 0) =
∫ dωd3k

(2π)4
φ̃(k, ω)e−ik·r

=
∫ d3k

(2π)3

∫ dω

2π
φ̃(k, ω)︸ ︷︷ ︸

=φ(k)

e−ik·r

=
∫ d3k

(2π)3
φ(k)e−ik·r (44)

so that an equivalent statement is that ψ(r, t) is uniquely determined by φ(k)
and the equation of motion.

This is a situation similar to that found in electromagnetism: in that case
the time evolution is simply obtained by replacing −k·r→ ω(k)t−k·r where
ω(k) is determined from Maxwell’s equations and depends on the medium

1It need not be so, for one can imagine a universe where, for example, the initial
acceleration of the objects is also needed in order to determine their evolution

2One can hand-wave about this – and I will do so later on, but the ultimate justification
for this lies in its experimental success.
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the waves travel in. For the vacuum

ω(k) = c|k| electromagnetic waves in vacuum (45)

But things can be more complicated: there can be an index of refraction,
so that ω/|k| = cn and n can depend on k (as you well know, that is why
prisms separate the color in white light: the index of refraction depends on
the color). So, in general ω can be a complicated function of k.

This type of situation also occurs in some quantum systems (though not
in all). And I will use it to describe dispersion of waves. Thus I will assume
that the quantum dynamics implies that if

ψ(r, t = 0) =
∫ d3k

(2π)3
φ(k)e−ik·r (46)

then

ψ(r, t) =
∫ d3k

(2π)3
φ(k)ei[ω(k)t−k·r] (47)

2.1 Dispersion

I will examine two special cases.

2.1.1 Massless particles

In this case E = pc and, using the deBroglie idea, ω = kc, so that

ψ(r, t) =
∫ d3k

(2π)3
φ(k)eik[ct−k̂·r] (48)

Now, write φ(k) as a function of k and k̂ and imagine first that φ is zero
except for a narrow set of values centered at k̂ = n̂, in this case

ψ(r, t) =
∫ d3k

(2π)3
φ(k,n)eik[ct−n̂·r]

=
∫ dΩnk

2dk

(2π)3
φ(k,n)eik[ct−n̂·r]

=
∫ k2dk

(2π)3
eik[ct−n̂·r]

∫
dΩnφ(k,n)︸ ︷︷ ︸

χ(k)
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=
∫ k2dk

(2π)3
χ(k)eik[ct−n̂·r] (49)

In particular ψ is seen to be a function of ct− n̂ · r only:

ψ(r, t) = f(ct− n̂ · r) ⇒ ψ(r, 0) = f(−n̂ · r) (50)

so that ψ(r, t) = ψ(0, t− r · n/c).
this result can be phrased as follows: at time t = 0 the wave packet takes

the form ψ(−r · n/c), at time t the packet looks the same except that it is
translated by r→ r−ctn: the packet stays the same while traveling at speed
c long the direction n.

2.1.2 General case

Suppose that ω is some known function of k so that

ψ(r, t) =
∫ d3k

(2π)3
φ(k)ei[ω(k)t−k·r] (51)

Suppose now that φ is strongly peaked around k = k0 = Kn, so that, writing

k = k0 + q (52)

so that for small q I get

k =
√
K2 + 2Kq · n + q2

= K
√

1 + 2q · n/K + q2/K2

= K

[
1 +

q · n
K

+
q2 − (q · n)2

2K2
+ · · ·

]

= K + q · n +
q2 − (q · n)2

2K
+ · · · (53)

Similarly, expanding the exponent

ω(k)t− k · r =

[
ω(K) + q · ndω(K)

dK
+ · · ·

]
t− (k0 + q) · r

= {ω(K)t− k0 · r}+ q · [vg(K)t− r] + · · · (54)

where vg denotes the group velocity
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A note on expansions. The assumption is that φ is the
fastest changing factor in the integrand, it is not zero near
k = k0 and vanishes quickly so that the exponent changes by
less than 2π as kmoves about the region where φ is signifi-
cantly different from zero. It is not useful to expand φ since
a power-series approximation does not reproduce a rapid de-
crease to zero. Note also that the approximation will break
down when r and/or t become large enough.

Finally there is the change of variables: d3k = d3q.
Putting it all together I get

ψ(r, t) =
∫ d3k

(2π)3
φ(k)ei[ω(k)t−k·r]

=
∫ d3q

(2π)3
φ(k) + q)ei{ω(K)t−k0·r}+iq·[vg(K)t−r]+···

= ei{ω(K)t−k0·r}
∫ d3q

(2π)3
φ(k0 + q)eiq·[vg(K)t−r]+··· (55)

This suggests we define the function

f(u) =
∫ d3q

(2π)3
φ(k0 + q)eiq·u (56)

in term of which

ψ(r, t) = ei{ω(K)t−k0·r}f(vg(K)t− r) (57)

This implies that except for a phase factor the wave packet travels with
velocity vg(K) since the argument of f remains constant when r/t = vg(K).
So, as long as the approximations used hold, the wave packet behaves as a
lump moving along at the group velocity.

2.1.3 Exercises

1. Consider a massless particle with an initial wave-function

ψ(r, t = 0) = Ae−r2/(2R2) (58)

for some constants A and R. For this system

(a) Find the corresponding φ(k)
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(b) Find the value of ψ for t 6= 0

2. Consider a non-relativistic particle with an initial wave-function

ψ(r, t = 0) = Ae−r2/(2R2) (59)

for some constants A and R. For this system

(a) Find the corresponding φ(k)

(b) Expand the relativistic expression for the energyE =
√
m2c4 + p2c2

for p � mc to find the non-relativistic expression for the energy
as a function of p; keep terms up to order p2 and ignore the rest.

(c) Use the deBroglie relationships to obtain ω(k) for this system

(d) Use the general expressions to determine the wave function ψ for
t 6= 0

Hint: you might find useful the expression∫ ∞

−∞
dke−uk2+vk =

√
π

u
ev2/(4u) (60)

valid whenever the real part of u is non-negative and for all complex v.

2.2 Positin and wave number uncertainties

Imagine that we ahve a function f(x) that is peaked at x = 0 but has a
width of order `. Then, if f represent a wave packet we can say that we can
specify the position of this packet up to an error of order `. In other words,
the uncertainty in the position of the wave packet is ∼ `. I will then write

Momentum uncertainty = ∆x ∼ ` (61)

As we saw above this will remain so over time for sufficiently small intervals
and distances.

Now conider g the Fourier trasnform of f ,

g(k) =
∫ ∞

−∞
dxe−ikxf(x) (62)

13



If |k`| � 2π then the exponent is small and varies very little over the region
|x| < `. So in this case we can repalce exp(−ikx) ' 0:

g(k) =
∫ ∞

−∞
dxf(x) |k`| � 2π (63)

If, on the other hand |k`| � 2π the expoenent will oscilate many times
inside the region |x| < ` where f is appreciably different form zero. Since
oscillations alternate in positive and negative values the total result for the
integrl is very small:

g(k) ' 0 |k`| � 2π (64)

A function that has this behavior (this is not a unique possiblity but it
illustrates well the concepts) is

g(k) ∼ e−[k`/(2π)]2
∫ ∞

−∞
dxf(x) (65)

So that the width of g is about 2π/`. Again, thinking of g as a wave packet
we can say that this width represents the uncertainty of the wave number
and I will write

Wave-number uncertainty = ∆k ∼ 2π

`
(66)

Note that the smaller the uncertainty in the position the larger the uncer-
tainty in the wave number and vice-versa.

This leads to the momentous result

∆x ∆k ∼ 2π ∆x ∆p ∼ 2πh̄ (67)

where I used the deBroglie relation between momentum and wave number

This amazing results implies the following:

If one associates a wave to every particle then the
momentum and position of all particles cannot be
specified with arbitrary precision. The sharper
we fix the position the fuzzier is the momentum
and vice-versa.

and is known as Heisenberg’s uncertainty principle. It is hard to over-
emphasize the importance (sceitnific and philosophical) of this result.
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